Find the equivalent capacitance of the following combination as shown in the figure. In which $C_1 = C_2 = C_3 = C_4 = C_5 = 100 \; \mu F$
Given, (required figure)
$C_1 = C_2 = C_3 = C_4 = C_5 = 100 \; \mu F$
The value of $C_1$ can be neglected and hence we find the equivalent capacitances between $P$ and $Q$ as,
$C_{PQ}$ $ = \frac{C_4.C_2}{C_4 \; + \; C_2}\; + \; \frac{C_5.C_3}{C_5 \; + \; C_3} = \frac{100 \; * \; 100}{100\; + \; 100}\; + \; \frac{100 \;*\;100}{100 \; + \; 100}$
∴ $C_{PQ}$ $= 50 \;+\;50 = 100 \; \mu F$
Return to Main Menu
Comments
Post a Comment