Two capacitors of capacitances $4\mu F$ and $6\mu F$ respectively are joined in series with a battery of emf $60\; V$. The connections are broken and the like terminals of the capacitors are then joined. Find the final charge on each capacitor.
Given,
Capacitance of capacitors $(C_1) = 4\mu F$
Capacitance of capacitor $(C_2) = 6\mu F$
Potential $(V) = 60\;V$
Charge in each capacitor $= ?$
Firstly the combination is in series, then
Total Capacitance $(C) = $ $\frac{C_1\;*\;C_2}{C_1 \; + \; C_2} = \frac{4 \;* \;10^{-6}\;*\;6\;*\;10^{-6}}{4 \;*\;10^{-6} \; + \; 6\;*\;10^{-6}}$ $= 2.4\;*\;10^{-6}\;F$
In series combination charge in each capacitor is same, then
But Potential in each capacitor is,
Now, when they are connected in parallel, the potential is the same. Then the common potential is $V$ given by
In parallel combination,
The charge on the first capacitor,
The charge on the second capacitor,
Capacitance of capacitors $(C_1) = 4\mu F$
Capacitance of capacitor $(C_2) = 6\mu F$
Potential $(V) = 60\;V$
Charge in each capacitor $= ?$
Firstly the combination is in series, then
Total Capacitance $(C) = $ $\frac{C_1\;*\;C_2}{C_1 \; + \; C_2} = \frac{4 \;* \;10^{-6}\;*\;6\;*\;10^{-6}}{4 \;*\;10^{-6} \; + \; 6\;*\;10^{-6}}$ $= 2.4\;*\;10^{-6}\;F$
In series combination charge in each capacitor is same, then
Charge $(q) = C\;*\;V = 60\;*\;2.4\;*\;10^{-6} = 1.44\;*\;10^{-4}\;C$
But Potential in each capacitor is,
$V_1 = $ $ \frac{q}{C_1} = \frac{1.44\;*\;10^{-4}}{4\;*\;10^{-6}}$ $ =36\;V $
$V_2 = $ $\frac{q}{C_2} = \frac{1.44\;*\;10^{-4}}{6\;*\;10^{-6}}$ $ =24\;V $
$V = $ $\frac{C_1V_1 \;+\; C_2 V_2}{C_1 \;+\; C_2} = \frac{(4 \;*\; 10^{-6}\;*\; 36 )\;+\; (6 \;*\; 10^{-6} \;*\; 24)}{4 \;*\; 10^{-6} \;+\; 6 \;*\; 10^{-6}}$ $= 28.8\;V$
In parallel combination,
The charge on the first capacitor,
$q_1 = C_1 * V = 4 * 10^{-6}*28.8 = 1.152 * 10^{-4}\;C$
The charge on the second capacitor,
$q_2 = C_2 * V = 6 * 10^{-6}*28.8 = 1.728 * 10^{-4}\;C$
Return to Main Menu
Comments
Post a Comment