A steel wire of density 8000\;kg/m^3 weights 24\;gm and is 250\;cm long. It lengthens by 1.2\;mm when stretched by a force of 80\;N. Calculate the Young's modulus for the steel and the energy stored in the wire.

Given,
Density of steel (\rho) = 8000\;kg/m^3
Mass of the steel(m) = 24\;gm = 24 * 10^{-3}\;kg
Length of wire (l) = 2.5\;m
Elongation (e) = 1.2\;mm = 1.2* 10^{-3}\;m
Force (F) = 80\;N
Young's modulus of Elasticity (Y) = ?
Energy stored (E) = ?


We have,
Y = \frac{F/A}{e/l} = \frac{F\,.\,l}{A\,.\,e} .......... (i)
But,
\rho = \frac{m}{V} = \frac{m}{A\,.\,l}   ⇒ A = \frac{m}{\rho \,.\,l}
Then substituting the  value of A in equation (i), we get
Y =  \frac{F\,.\,l^2\,.\,\rho}{e\,.\,m} = \frac{80 \, * \, 2.5^2 \, * \, 8000}{1.2 \, * \, 10^{-3}\, * \, 24\,*\,10^{-3}}  = 1.4\,*\,10^{11}\;N/m^2
Again,
E = \frac{1}{2} \,F\,.\,e = \frac{1}{2}\,80 \,*\,1.2 \,*\,10^{-3} = 4.8 \, * \, 10^{-2}\;J

Return to Main Menu 

Comments