A uniform steel wire of density 7800\;kg/m^3 weights 16\;gm and is 250\;cm long. It lengthens by 1.2\;mm when stretched by a force of 80\;N. Calculate the Young's modulus and the energy stored in the wire.
Given,
Density of steel (\rho) = 7800\;kg/m^3
Mass of the steel(m) = 16\;gm = 16 * 10^{-3}\;kg
Length of wire (l) = 2.5\;m
Elongation (e) = 1.2\;mm = 1.2* 10^{-3}\;m
Force (F) = m.g = 8*10 = 80\;N
Young's modulus of Elasticity (Y) = ?
Energy stored (E) = ?
We have,
Density of steel (\rho) = 7800\;kg/m^3
Mass of the steel(m) = 16\;gm = 16 * 10^{-3}\;kg
Length of wire (l) = 2.5\;m
Elongation (e) = 1.2\;mm = 1.2* 10^{-3}\;m
Force (F) = m.g = 8*10 = 80\;N
Young's modulus of Elasticity (Y) = ?
Energy stored (E) = ?
We have,
Y = \frac{F/A}{e/l} = \frac{F\,.\,l}{A\,.\,e} .......... (i)But,
\rho = \frac{m}{V} = \frac{m}{A\,.\,l} ⇒ A = \frac{m}{\rho \,.\,l}Then substituting the value of A in equation (i), we get
Y = \frac{F\,.\,l^2\,.\,\rho}{e\,.\,m} = \frac{80 \, * \, 2.5^2 \, * \, 7800}{1.2 \, * \, 10^{-3}\, * \, 16\,*\,10^{-3}} = 2\,*\,10^{11}\;N/m^2Again,
E = \frac{1}{2} \,F\,.\,e = \frac{1}{2}\,80 \,*\,1.2 \,*\,10^{-3} = 4.8 \, * \, 10^{-2}\;J
Return to Main Menu
Comments
Post a Comment