A vertical brass rod of the circular section is loaded by placing a 5\;kg weight on top of it. If its length is 50\;cm and radius of the cross-section is 1\;cm, find the contraction of rod and the energy stored in it.
Given,
Mass of brass (M) = 5\;kg
Length of rod (l) = 50\;cm = 0.5=\,m
Radius of brass rod (r) = 1\;cm = 0.01\;m
Contraction of rod (e) = ?
Energy stored (W) = ?
Young's modulus of brass (Y) = 3.5 * 10^{10}\;N/m^2
Load on the brass (F) = m.g = 5 * 10 = 50\;N
We have,
Mass of brass (M) = 5\;kg
Length of rod (l) = 50\;cm = 0.5=\,m
Radius of brass rod (r) = 1\;cm = 0.01\;m
Contraction of rod (e) = ?
Energy stored (W) = ?
Young's modulus of brass (Y) = 3.5 * 10^{10}\;N/m^2
Load on the brass (F) = m.g = 5 * 10 = 50\;N
We have,
Y = \frac{F/A}{e/l} = \frac{F \;*\; l}{e\;*\;A} = \frac{F \;*\; l}{e \;*\; \pi \; r^2}
⇒ e = \frac{F.l}{Y. \pi r^2} = \frac{50 \;*\; 0.5}{3.5 \;*\; 10^{10} \;*\; \pi \;*\; (0.01^2)} = 2.27 * 10^{-6}\;m∴ Contraction of rod $(e) = 2.27 * 10^{-6}\;m ∴ Energy stored (E) = \frac{1}{2}F.e = \frac{1}{2}* 50 * 2.27 * 10^{-6} = 5.7 * 10^{-5}\;J$
Return to Main Menu
Comments
Post a Comment