How much force is required to punch a hole 1 cm in diameter in a steel sheet $5\;mm$ thick whose shearing strength is $2.76 \; * \; 10^8\;N/m^2$.
Given,
Diameter of the hole $(d) = 1\;cm = 0.01\;m$
Thickness of the sheet $(t) = 5\;mm = 5 * 10^{-3}\;m$
Shear of strength $(\eta) = 2.76 * 10^8 \;N/m^2$
Force required $(F) = ?$
We have,
But $A = l * t = 2 . \pi . r * t$ [∵ Length of the circumference $l = 2 . \pi . r$]
From the equation $1^{st}$,
Diameter of the hole $(d) = 1\;cm = 0.01\;m$
Thickness of the sheet $(t) = 5\;mm = 5 * 10^{-3}\;m$
Shear of strength $(\eta) = 2.76 * 10^8 \;N/m^2$
Force required $(F) = ?$
We have,
Shear strength $= \frac{F}{A}$ .......... (i)
But $A = l * t = 2 . \pi . r * t$ [∵ Length of the circumference $l = 2 . \pi . r$]
From the equation $1^{st}$,
$F = Shear \;\; strength * A = 2.76 * 10^8 * 2 . \pi . r * t $
$ \;\;\;\; = 2.76 * 10^8 * 2 . \pi . 0.01 * 5 * 10^{-3} = 43353\;N$
Return to Main Menu
Comments
Post a Comment