Calculate the binding energy per nucleon of $_{26}{Fe}^{56}$. Atomic mass of $_{26}{Fe}^{56}$ is $55.9349 \;u$ and that of $_1H^1$ is $1.00783\;u$. Mass of $_0 n^1 = 1.00867\;u$ and $1u = 931\;MeV$.
Given,
Atomic mass of $_{26}{Fe}^{56} = A = 55.9349 \;u$
Mass of $_1H^1$ $ = m_p = 1.00783\;u$
Mass of $_0 n^1 $ $ = m_n = 1.00867\;u$
$1u = 931\;MeV$
B.E. per nucleon, $(\overline{BE}) = ?$
Now,
$B.E. = [Z\;m_p + (A-Z)\;m_n - M] * 931 \;MeV$
$B.E. = [26 * 1.00783 + (56 - 26) * 1.00867 - 55.9349] * 931 = 492.29418\;MeV$
$\overline{BE} = $ $\frac{B.E.}{A} = \frac{492.29418}{56}$ $ = 8.79096 \; Me V/nucleon = 1.41 * 10^{-12}\;J$.
Atomic mass of $_{26}{Fe}^{56} = A = 55.9349 \;u$
Mass of $_1H^1$ $ = m_p = 1.00783\;u$
Mass of $_0 n^1 $ $ = m_n = 1.00867\;u$
$1u = 931\;MeV$
B.E. per nucleon, $(\overline{BE}) = ?$
Now,
$B.E. = [Z\;m_p + (A-Z)\;m_n - M] * 931 \;MeV$
Return to Main Menu
Comments
Post a Comment