Calculate the binding energy per nucleon of _{26}{Fe}^{56}. Atomic mass of _{26}{Fe}^{56} is 55.9349 \;u and that of _1H^1 is 1.00783\;u. Mass of _0 n^1 = 1.00867\;u and 1u = 931\;MeV.
Given,
Atomic mass of _{26}{Fe}^{56} = A = 55.9349 \;u
Mass of _1H^1 = m_p = 1.00783\;u
Mass of _0 n^1 = m_n = 1.00867\;u
1u = 931\;MeV
B.E. per nucleon, (\overline{BE}) = ?
Now,
B.E. = [Z\;m_p + (A-Z)\;m_n - M] * 931 \;MeV
B.E. = [26 * 1.00783 + (56 - 26) * 1.00867 - 55.9349] * 931 = 492.29418\;MeV
\overline{BE} = \frac{B.E.}{A} = \frac{492.29418}{56} = 8.79096 \; Me V/nucleon = 1.41 * 10^{-12}\;J.
Atomic mass of _{26}{Fe}^{56} = A = 55.9349 \;u
Mass of _1H^1 = m_p = 1.00783\;u
Mass of _0 n^1 = m_n = 1.00867\;u
1u = 931\;MeV
B.E. per nucleon, (\overline{BE}) = ?
Now,
B.E. = [Z\;m_p + (A-Z)\;m_n - M] * 931 \;MeV
Return to Main Menu
Comments
Post a Comment