Calculate the binding energy per nucleon of _{26}{Fe}^{56}. Atomic mass of _{26}{Fe}^{56} is 55.9349 \;u and that of _1H^1 is 1.00783\;u. Mass of _0 n^1 = 1.00867\;u and 1u = 931\;MeV.

Given,

Atomic mass of _{26}{Fe}^{56} = A = 55.9349 \;u
Mass of _1H^1                        = m_p = 1.00783\;u
Mass of _0 n^1                         = m_n = 1.00867\;u
1u = 931\;MeV
B.E. per nucleon, (\overline{BE}) = ?


Now,
B.E. = [Z\;m_p + (A-Z)\;m_n - M] * 931 \;MeV

B.E. = [26 * 1.00783 + (56 - 26) * 1.00867 - 55.9349] * 931 = 492.29418\;MeV

\overline{BE} =   \frac{B.E.}{A} = \frac{492.29418}{56}    = 8.79096 \; Me V/nucleon        =      1.41 * 10^{-12}\;J.


Return to Main Menu


Comments