Calculate the binding energy per nucleon of calcium nucleus $(_{20}{Ca}^{40})$. Given, Mass of $_{20}{Ca}^{40} = 39.962589\;u$; Mass of neutron $m_n = 1.008665\;u$; Mass of proton $m_p = 1.007825\;u$; $1\;u = 931\;MeV$.
Given,
Atomic mass of $_{20}{Ca}^{40} = A = 39.962589\;u$
Mass of $_1H^1$ $ = m_p = 1.007825\;u$
Mass of $_0 n^1 $ $ = m_n = 1.008665\;u$
$1u = 931\;MeV$
B.E. per nucleon, $(\overline{BE}) = ?$
Mass of $_1H^1$ $ = m_p = 1.007825\;u$
Mass of $_0 n^1 $ $ = m_n = 1.008665\;u$
$1u = 931\;MeV$
B.E. per nucleon, $(\overline{BE}) = ?$
Now,
$B.E. = [Z\;m_p + (A-Z)\;m_n - M] * 931 \;MeV$
$B.E. = [20 * 1.007825 + (40 - 20) * 1.008665 - 39.962589] * 931 = 1793.954141\;MeV$
$\overline{BE} = $ $\frac{B.E.}{A} = \frac{1793.954141}{40}$ $ = 44.848853 \; Me V/nucleon$,
$B.E. = [Z\;m_p + (A-Z)\;m_n - M] * 931 \;MeV$
$\overline{BE} = $ $\frac{B.E.}{A} = \frac{1793.954141}{40}$ $ = 44.848853 \; Me V/nucleon$,
Return to Main Menu
Comments
Post a Comment